1. Bài toán thú vị về tổng và hiệu luyện thi Violympic lớp 5
Câu 1: Tìm hiệu của hai số biết rằng nếu số bị trừ tăng thêm 135 và số trừ giảm đi 205 thì hiệu mới là 542. Vậy hiệu của hai số đó là gì?
a. 882 b. 712 c. 202 d. 372
Giải thích
Khi cộng thêm 135 và trừ đi 205, hiệu số sẽ tăng thêm
135 + 205 = 340
Hiệu của hai số ban đầu là:
542 - 340 = 202
Kết quả: 202
Câu 2: Hiệu của hai số bằng 1/5 số nhỏ hơn. Tổng hai số là số tròn chục lớn nhất với 3 chữ số. Vậy số lớn là:
a/ 450 ; b/ 825 ; c/ 540 ; d/ 90.
Giải thích
Số tròn chục lớn nhất với 3 chữ số là 990
Tỷ lệ giữa số nhỏ và số lớn là 5/(5+1) = 5/6
Tổng số phần chia đều là:
5 + 6 = 11 (phần)
Giá trị của mỗi phần là:
990 : 11 = 90
Số lớn là:
90 x 6 = 540
Câu 3: Cho phân số 15/19. Tìm số a sao cho khi trừ a khỏi tử số và mẫu số của phân số đó, ta được một phân số mới có giá trị bằng 7/9?
Giải pháp:
Chênh lệch giữa mẫu số và tử số là: 19 – 15 = 4.
Mẫu số luôn lớn hơn Tử số 4 đơn vị
Chúng ta có một sơ đồ
Tử số mới: |"---|"---|"---|"---|"---|"---|"---|"---| 4
Mẫu số mới: |"---|"---|"---|"---|"---|"---|"---|"---|"---|"---|
Hiệu số của các phần bằng nhau là: 9 – 7 = 2 (phần)
Tử số của phân số mới là: (4 : 2) x 7 = 14
Số a cần giảm là: 15 - 14 = 1
Kết quả là: 1
Câu 4: Tính tổng các số ba chữ số mà tất cả các chữ số đều chia 5 dư 3
Trả lời: Tổng của các số đó là
Giải bài:
Các số ba chữ số chia 5 dư 3 bao gồm: 103; 108; 113; .....; 993; 998
Số lượng số hạng là
(998 - 103) : 5 + 1 = 180 (số)
Tổng các số này là:
(998 + 103) x 180 : 2 = 99090
Kết quả là: 99090
Câu 5: Vào năm 2016, tuổi mẹ bằng tuổi con. Mẹ sinh con khi mẹ 30 tuổi. Tính năm sinh của mẹ. Trả lời: Năm sinh của mẹ là
Giải bài:
Mẹ luôn lớn hơn con 30 tuổi. Vào năm 2016, tuổi mẹ là 7 phần và tuổi con là 2 phần. Ta có sơ đồ như sau
Tuổi của mẹ: |""|""|""|""|""|""|""|
Tuổi của con: |""|""| 30
Sự chênh lệch phần là: 7 - 2 = 5 (phần)
Tuổi mẹ vào năm 2016 là: (30 : 5) x 7 = 42 (tuổi)
Năm sinh của mẹ là: 2016 - 35 = 1974
Kết quả là: 1974
Câu 6: Tìm một số sao cho số đó chia 8 dư 5, chia 12 dư 1, và hai thương chênh lệch nhau 13 đơn vị.
Trả lời: Số cần tìm là……………….
Giải bài:
Theo đề bài, nếu cộng 11 vào số cần tìm thì số đó sẽ chia hết cho 8 và 12. Khi đó, thương của phép chia cho 8 sẽ lớn hơn thương của phép chia cho 12 thêm 2 đơn vị.
Hiệu của hai thương lúc này là 14 đơn vị. Tỷ lệ giữa hai thương là 8/12
Sự chênh lệch giữa hai phần bằng nhau là: 12 – 8 = 4 (phần)
Thương của phép chia cho 8 là: 14 : 4 x 12 = 42
Số cần tìm là: 42 x 8 – 11 = 325
Câu 7: Tổng của hai số tự nhiên là 1644. Nếu xóa chữ số hàng đơn vị của số lớn, ta sẽ được số bé. Tìm số lớn. Trả lời: Số lớn là…………………..
Giải bài:
Số lớn gấp 10 lần số bé và chữ số hàng đơn vị của số lớn là 5.
Tổng số phần bằng nhau là: 10 + 1 = 11 (phần)
Số bé là: 1644 : 11 = 149 (dư 5)
Số lớn là: 149 x 10 + 5 = 1495
Câu 8: Số bé là 2/5 của số lớn. Tìm số lớn biết rằng nếu cộng 48 vào số bé thì sẽ được số lớn.
Giải bài:
Khi cộng 48 vào số bé thì sẽ được số lớn, do đó sự chênh lệch giữa hai số là 48.
Ta có sơ đồ như sau:
Sự chênh lệch giữa các phần bằng nhau là:
5 trừ 2 bằng 3 (phần)
Số lớn là: (48 chia 3) nhân 5 = 80
Câu 9: Trung bình cộng của ba phân số là 31/90. Nếu tăng phân số thứ hai lên gấp hai lần, thì trung bình cộng của chúng sẽ là 23/45. Biết phân số thứ hai hơn phân số thứ ba là 2/15. Tìm phân số đầu tiên?
Bài giải
Tổng của ba phân số: 31/90 nhân 3 = 93/90
Nếu phân số thứ hai được tăng gấp đôi, thì trung bình cộng của chúng sẽ là 23/45.
Tổng của ba phân số: 23/45 nhân 3 = 69/45
Phân số thứ hai là: 69/45 trừ 93/90 = ½
Phân số thứ ba là: ½ trừ 2/15 = 11/30
Phân số thứ nhất là: 93/90 trừ (½ cộng 11/30) = 93/90 trừ 26/30 = 1/6
2. Bài toán thú vị về tìm số cho kỳ thi Violympic lớp 5
Câu 1: Trong phép chia cho 42, thương là số tự nhiên chẵn lớn nhất có hai chữ số, và số dư là số tự nhiên lẻ chia hết cho cả 3 và 5. Tìm số bị chia?
Bài giải
Số tự nhiên chẵn lớn nhất có hai chữ số là: 98
Số dư là số lẻ chia hết cho 3 và 5: 15
Số chia: 98 x 42 + 15 = 4131
Kết quả: 4131
Câu 2: Cho một số hai chữ số. Nếu thêm chữ số 2 vào trước số đó, số mới sẽ gấp 5 lần số cũ. Tìm số đó?
Giải bài
Gọi số cần tìm là ab. Số mới là 2ab
Theo bài toán, ta có: 2ab = 5 x ab
200 + ab = 5 x ab
200 = 4 x ab
ab = 200 / 4
ab = 50
Kết quả: 50
Câu 3: Tìm số lớn nhất có 4 chữ số khác nhau nhỏ hơn 2000, chia hết cho 5 dư 3 và chia hết cho 9.
Giải bài
Số này có dạng: abcd < 2000 (điều kiện a ≠ b ≠ c ≠ d)
Để số lớn nhất, a = 1
Khi chia cho 5 dư 3 nên d = 3 hoặc d = 8. Để số nhỏ hơn 2000 và lớn nhất, chọn d = 8. Số đó là 1bc8.
Vậy b = 9 và c = 0 (vì 1 + 9 + 8 + 0 chia hết cho 9)
Số cần tìm là 1908
Kết quả: 1908
Câu 4: Có bao nhiêu số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Giải thích:
Có 9 số với chữ số hàng chục trùng với chữ số hàng đơn vị, tương ứng với các chữ số từ 1 đến 9.
Nếu chữ số hàng chục là x, thì số lượng số có chữ số hàng chục là x và chữ số hàng đơn vị nhỏ hơn x chính là x (vì số lượng số tự nhiên liền trước của một số, bao gồm cả số 0, là chính số đó).
Do đó, tổng số các số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (số).
Vậy tổng số các số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là 45.
Câu 5: Tìm số a4b7 có 4 chữ số khác nhau và chia hết cho 5 và 9.
Giải pháp:
Đặt số cần tìm là a47d.
Vì số này có 4 chữ số khác nhau và phải chia hết cho 5 và 9, nên số đó có thể là: a470 hoặc a475.
Nếu d = 0, thì a phải là 9, tức là số bị loại vì có chữ số giống nhau.
Nếu d = 5 thì a = 2. Vì 2 + 4 + 7 + 5 = 18.
Số cần tìm là 2475.
Câu 6: Xác định chữ số thứ 2014 trong dãy số tự nhiên liên tiếp 1; 2; 3; .... là chữ số gì?
Giải pháp:
Các số có 1 chữ số từ 1 đến 9 tạo thành 9 chữ số.
Số có 2 chữ số từ 10 đến 99 tổng cộng là 90 số, và tổng số chữ số là 2 x 90 = 180.
Số chữ số còn lại thuộc về các số có 3 chữ số (3 x 900 = 2700 chữ số).
Số chữ số còn lại là: 2014 – (9 + 180) = 1825 chữ số.
Mỗi số có 3 chữ số đóng góp 3 chữ số, vì vậy số lượng số có 3 chữ số là: 1825 : 3 = 608 số, dư 1 chữ số.
Từ số 100 đến số 100 + 608 – 1 = 707, có tổng cộng 608 số 3 chữ số.
Chữ số kế tiếp là số 7 trong số 708.
Đáp án: 7
Câu 7: Tìm số tự nhiên lớn nhất với các chữ số khác nhau sao cho tổng các chữ số bằng 26.
Giải pháp:
Số lớn nhất sẽ có nhiều chữ số nhất và chữ số lớn nhất nằm ở vị trí cao nhất.
Ta có 1+2+3+4+5+6 = 21, còn thiếu 5 đơn vị. Thêm số 4 vào để tổng là 9, và ta thấy 6+5 = 7+4 nên
Số cần tìm là: 9743210
Đáp án: 9743210
Câu 8: Xác định chữ số tận cùng của tổng 10 số tự nhiên liên tiếp bất kỳ.
Trả lời: Chữ số tận cùng của tổng 10 số tự nhiên liên tiếp bất kỳ là
Mười số tự nhiên liên tiếp sẽ có đủ 10 chữ số từ 0 đến 9 xuất hiện.
Tổng các chữ số ở hàng đơn vị là: (0 + 9) x 10 / 2 = 45.
Vậy chữ số hàng đơn vị của tổng 10 số tự nhiên liên tiếp là 5.
Bài toán thú vị liên quan đến yếu tố hình học cho kỳ thi Violympic lớp 5.
Câu 1: Để gấp đôi diện tích của một hình chữ nhật khi chiều rộng chỉ tăng 25%, thì chiều dài cần phải tăng bao nhiêu phần trăm?
Trả lời: Diện tích của hình chữ nhật được tính bằng công thức D x R (trong đó D là chiều dài và R là chiều rộng).
Chiều rộng tăng 25%, tức là 125% của chiều rộng ban đầu.
Gọi n là tỷ lệ phần trăm cần tăng của chiều dài (D) để: 125% x R x n x D = D x R x 2. Ta có: 125% x n = 2.
Vì vậy, n = 2 / 125% = 160%.
Tỷ lệ phần trăm tăng của chiều dài là:
160% - 100% = 60%.
Câu 2: Có 1536 khối lập phương nhỏ với cạnh 1cm được xếp thành một hình hộp chữ nhật có chiều dài 16cm và chiều rộng 12cm. Tính chiều cao của hình hộp chữ nhật này.
Trả lời: Chiều cao của hình hộp chữ nhật là cm.
Thể tích của hình hộp chữ nhật là: 1 x 1 x 1 x 1536 = 1536 cm³.
Chiều cao của hình hộp chữ nhật là: 1536 / (16 x 12) = 8 cm.
Câu 3: Cho hình thang ABCD với đáy nhỏ là AB và đáy lớn là CD. Hai đường chéo AC và BD cắt nhau tại I. Diện tích tam giác ABI là 24,5 cm² và diện tích tam giác ICD là 98 cm². Tính diện tích của hình thang ABCD.
Giải pháp:
Hình thang ABCD cho thấy hai tam giác SAID và SBIC có diện tích lần lượt là n.
Xem xét hai tam giác AIB và AID có chung chiều cao từ A, nên tỉ lệ giữa hai cạnh đáy IB và ID tỉ lệ với diện tích của chúng: IB/ID = 24,5/n.
Tương tự, với hai tam giác CIB và CID, ta có tỉ lệ IB/ID = n/98.
Kết quả là: 24,5/n = n/98
Do đó, n x n = 98 x 24,5 = 2401
Vậy n = 49
Diện tích hình thang ABCD = 24,5 + 98 + 49 x 2 = 220,5 cm²
Đáp án: 220,5 cm²
Câu 4: Một khu vườn hình chữ nhật có diện tích 24,2 m², chiều dài gấp 1,25 lần chiều rộng. Tính số lượng cọc cần thiết để đóng xung quanh khu vườn, biết rằng mỗi mét có một cọc và cửa ra vào rộng 0,8 m cũng cần cọc.
Giải pháp:
Chiều dài của khu vườn là 1,25 lần chiều rộng, tức là chiều dài bằng 5/4 chiều rộng. Ta có thể hình dung khu vườn chia thành các hình vuông nhỏ với diện tích tương ứng.
Diện tích mỗi hình vuông nhỏ là: 24,2 / (4 x 5) = 1,21 m²
Cạnh của mỗi hình vuông nhỏ là 1,1 m vì 1,1 x 1,1 = 1,21 m²
Chiều dài của mảnh vườn là: 1,1 x 4 = 4,4 m
Chiều dài khu vườn là: 1,1 x 5 = 5,5 m
Chu vi khu vườn là: (4,4 + 5,5) x 2 = 19,8 m
Số cọc cần thiết để đóng quanh khu vườn là: (19,8 - 0,8) / 1 = 19 cọc
Đáp án: 19 cọc
Câu 5: Một miếng bìa hình bình hành có chu vi 2 m. Nếu giảm chiều dài đi 20 cm, miếng bìa sẽ trở thành hình thoi có diện tích 12 dm². Tính diện tích của miếng bìa hình bình hành.
Giải pháp:
Chuyển đổi đơn vị: 2 m = 200 cm; 12 dm² = 1200 cm².
Nửa chu vi của hình bình hành là:
200 / 2 = 100 cm
Cạnh của hình thoi là:
(100 - 20) / 2 = 40 cm
Chiều dài của hình bình hành là:
40 + 20 = 60 cm
Chiều cao của hình thoi cũng chính là chiều cao của hình bình hành:
1200 / 40 = 30 cm
Diện tích của hình bình hành là:
60 x 30 = 1800 cm² = 18 dm²
Câu 6: Hình bình hành ABCD có cạnh AB dài hơn cạnh BC là 1 dm và AB gấp 5/3 BC. Tính chu vi của hình bình hành này.
Giải pháp:
Chuyển đổi: 1 dm = 10 cm
Dưới đây là sơ đồ minh họa
Chênh lệch phần giữa hai cạnh là: 5 – 3 = 2 (phần)
Độ dài cạnh AB: (10 / 2) x 5 = 25 cm
Độ dài cạnh BC: (10 / 2) x 3 = 15 cm
Chu vi hình chữ nhật là: (15 + 25) x 2 = 80 cm
Kết quả: 80 cm
Câu 7: Một miếng bìa hình chữ nhật có chu vi gấp 5 lần chiều rộng. Nếu tăng chiều rộng thêm 9 cm và chiều dài thêm 4 cm thì miếng bìa trở thành hình vuông. Tính diện tích miếng bìa ban đầu.
Bài giải: Vì chu vi là 5 lần chiều rộng nên nửa chu vi bằng 5/2 chiều rộng. Tức là chiều dài gấp 3 lần chiều rộng còn chiều rộng gấp 2 lần.
Xem sơ đồ bên dưới
Giá trị của một phần là: 9 – 4 = 5 cm
Chiều dài: 5 x 3 = 15 cm
Chiều rộng: 5 x 2 = 10 cm
Diện tích miếng bìa là: 10 x 15 = 150 cm²
Kết quả: 150 cm²
Câu 8: Tính diện tích của 1/3 miếng bìa hình vuông với cạnh dài ½ m.
Bài giải
Diện tích miếng bìa hình vuông: ½ x ½ = ¼ m²
Diện tích của 1/3 miếng bìa là: ¼ x ⅓ = 1/12 m²
Kết quả: 1/12 m²
Trên đây là những chia sẻ của Mytour về chủ đề 'Những bài Toán luyện thi Violympic lớp 5 chọn lọc kèm đáp án'. Hy vọng bài viết này sẽ là tài liệu tham khảo hữu ích cho bạn. Cảm ơn bạn đã theo dõi và quan tâm đến nội dung tư vấn của chúng tôi. Xin chân thành cảm ơn quý khách.